Hitching a Ride on a Missile

Before the Saturn V rocket carried men to the moon, a number of smaller rockets carried men on suborbital and orbital flights around the Earth. These rockets weren’t purpose-built for this task, though. In fact, the first rockets that carried people into outer space were repurposed ballistic missiles, originally designed to carry weapons.

While it might seem like an arduous task to make a ballistic missile safe enough to carry a human, the path from a weapons delivery system to passenger vehicle was remarkably quick. Although there was enough safety engineering and redundancy to disqualify the space program as a hack, it certainly was a clever repurposing of the available technology. Read on for the full story.

The first ballistic missiles were used by Germany in World War II in the early- and mid-1940s. The United States was able to capture a large amount of these missiles at the end of the war, and additionally over 100 of the missiles’ creators (including the famous rocket scientist Wernher von Braun) surrendered to the Americans and began working on similar weapons systems for the United States.

It wasn’t long after the end of World War II that the American military became involved in the Korean War. As part of the war effort, the German and American scientists were tasked with building a ballistic missile with a 500 mile range. This missile would become the Redstone missile which was first flown in August 1953, one month after the end of the military conflict in Korea.

Although the hostilities in Korea had ended, the US military was keen to continue using the Redstone rocket. It was deployed in West Germany from 1958 to 1964 as part of NATO defenses, and was also the first missile to carry a live nuclear warhead. Its utility was the reason that NASA chose the rocket as the platform for the first manned missions, and a modified Redstone/Jupiter rocket would ultimately put the first American into space only 16 years after the end of World War II.

People as Payload

The modifications made to the rocket itself were modest. Most notably, the rocket body was lengthened to allow for a larger fuel capacity, even though it would only utilize a single stage. And, obviously, the weapons payload was replaced with a capsule that could carry one person. The more intricate, demanding changes came as safety improvements for this occupant. For starters, the missile needed to be fueled with a less toxic fuel and then needed an automatic abort system that could react faster than its human operators if a catastrophic failure was imminent.

The abort system went through rigorous testing, and even then caused one of the test flights to shut down after traveling only four inches off of the launch pad. The problem turned out to be electrical, and after a new rocket was delivered (the four-inch fall damaged the rocket itself) the capsule flew a successful test a few days later.

The practice of retrofitting ballistic missiles to carry humans continued through the Mercury program that initially used these Redstone rockets. In order to achieve orbital flight, however, a more powerful rocket than the Redstone was needed. NASA’s only option at the time was to begin preparing an Atlas missile, known to be unreliable, for human flight. In fact, the Mercury astronauts were flown in to watch a test launch, and the rocket exploded minutes into its flight.

With an unreliable rocket, NASA spent a lot of engineering effort on getting the capsule back to earth safely in event of an emergency. In this video, you can watch a Mercury capsule flying away to safety as the Atlas rocket underneath it fails. The capsule, and its mechanical test pilot, survived to fly again. Indeed, there were many learning experiences between the Redstone launches and the completion of the Mercury program, which did eventually see successful Atlas launches, all of which improved the reliability of the rockets and ensured that the astronauts would be as safe as possible.

Practice Makes Perfect

Before the Apollo missions were flown, however, a second spaceflight program was needed. Known as Project Gemini, astronauts in this program would be lifted into orbit on the back of a Titan II missile. The Titan II proved to be extremely reliabile, especially compared to the Atlas platform. That being said, the Air Force and NASA did have many disagreements about the missile platform, since the Titan II missile was originally supposed to be just that: a weapons platform. Since it was not originally intended for manned flight, there was not consensus on exactly what the rocket should be built for. Eventually, though, the Titan platform flew 12 Gemini missions (all except the first two test flights were manned by a pair of astronauts each), and continued flying unmanned missions until its final flight in 2003.

In fact, the first American spaceflights that didn’t repurpose a recognizable existing ballistic missile technology were the Apollo missions. The Saturn rockets flew all of the Apollo missions, including the ones that sent humans to the moon. They also launched Skylab, the first American space station. While all of the Saturn launches were peaceful, they were built on the lessons and technologies learned from having a ballistic missile program to exploit in the first place. After all, the accuracy needed to safely place a man at a specific location on the Moon certainly implies the ability to deliver a weapon to an even more precise location on the Earth.


Filed under: Featured, Original Art

from Hackaday http://ift.tt/2u52emi
via IFTTT