Origami based earthworm like locomotion robots

Hongbin Fang shared this video on Youtube!

This is an origami-ball-based earthworm-like loocmotion robot developed in the Structural Dynamics and Control Lab at the University of Michigan. Fabrication of the robot is significnatly simplified by 2D laser cutting and folding. The robot is very light, and is able to move effectively in a tube. Controlled by different bio-inspired gaits, the robot show qualitatively different locomotion modes and average locomotion speeds.

Hongbin has also shared their work on iopscience – you can read more about these origami robots there!

Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot ‘body’, and the earthworm’s locomotion mechanism is mimicked to develop a gait generator as the robot ‘centralized controller’. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm’s body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms’ fundamental locomotion mechanism—retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.

See more!



from Adafruit Industries – Makers, hackers, artists, designers and engineers! http://ift.tt/2yEZwGl
via IFTTT