Dark matter nightmare: What if we are just using the wrong equations?
Einstein’s theory of general relativity is an extremely well-confirmed theory. Countless experiments have shown that its predictions for our solar system agree with observation to utmost accuracy. But when we point our telescopes at larger distances, something is amiss. Galaxies rotate faster than expected. Galaxies in clusters move faster than they should. The expansion of the universe is speeding up.
General relativity does not tell us what is going on.
Physicists have attributed these puzzling observations to two newly postulated substances: Dark matter and dark energy. These two names are merely placeholders in Einstein’s original equations; their sole purpose is to remove the mismatch between prediction and observation.
This is not a new story. We have had evidence for dark matter since the 1930s, and dark energy came on the radar already in the 1990. Both have since occupied thousands of physicists with attempts to explain just what we are dealing with: Is dark matter a particle, and if so what type, and how can we measure it? If it is not a particle, then what do we change about general relativity to fix the discrepancy with measurements? Is dark energy maybe a new type of field? Is it, too, made of some particle? Does dark matter have something to do with dark energy or are the two unrelated?
To answer these questions, hundreds of hypotheses have been proposed, conferences have been held, careers have been made – but here we are, in 2019, and we still don’t know.
Bad enough, you may say, but the thing that really keeps me up at night is this: Maybe all these thousands of physicists are simply using the wrong equations. I don’t mean that general relativity needs to be modified. I mean that we incorrectly use the equations of general relativity to begin with.
The issue is this. General relativity relates the curvature of space and time to the sources of matter and energy. Put in a distribution of matter and energy at any one moment of time, and the equations tell you what space and time do in response, and how the matter must move according to this response.
But general relativity is a non-linear theory. This means, loosely speaking, that gravity gravitates. More concretely, it means that if you have two solutions to the equations and you take their sum, this sum will not also be a solution.
Now, what we do when we want to explain what a galaxy does, or a galaxy cluster, or even the whole universe, is not to plug the matter and energy of every single planet and star into the equations. This would be computationally unfeasible. Instead, we use an average of matter and energy, and use that as the source for gravity.
Needless to say, taking an average on one side of the equation requires that you also take an average on the other side. But since the gravitational part is non-linear, this will not give you the same equations that we use for the solar system: The average of a function of a variable is not the same as the function of the average of the variable. We know it’s not. But whenever we use general relativity on large scales, we assume that this is the case.
So, we know that strictly speaking the equations we use are wrong. The big question is, then, just how wrong are they?
Nosy students who ask this question get usually told these equations are not very wrong and good to use. The argument goes that the difference between the equation we use and the equation we should use is negligible because gravity is weak in all these cases.
But if you look at the literature somewhat closer, then this argument has been questioned. And these questions have been questioned. And the questioning questions have been questioned. And the debate has remained unsettled until today.
That it is difficult to average non-linear equations is of course not a problem specific to cosmology. It’s a difficulty that condensed matter physicists have to deal with all the time, and it’s a major headache also for climate scientists. These scientists have a variety of techniques to derive the correct equations, but unfortunately the known techniques do not easily carry over to general relativity because they do not respect the symmetries of Einstein’s theory.
It’s admittedly an unsexy research topic. It’s technical and tedious and most physicists ignore it. And so, while there are thousands of physicists who simply assume that the correction-terms from averaging are negligible, there are merely two dozen or so people trying to make sure that this assumption is actually correct.
Given how much brain-power physicists have spent on trying to figure out what dark matter and dark energy is, I think it would be a good idea to definitely settle the question whether it is anything at all. At the very least, I would sleep better.
Further reading: Does the growth of structure affect our dynamical models of the universe? The averaging, backreaction and fitting problems in cosmology, by Chris Clarkson, George Ellis, Julien Larena, and Obinna Umeh.
Rept. Prog. Phys. 74 (2011) 112901, arXiv:
1109.2314 [astro-ph.CO].
from Hacker News https://ift.tt/2MiZEUs